The Discrete Galerkin Method for Integral Equations
نویسندگان
چکیده
A general theory is given for discretized versions of the Galerkin method for solving Fredholm integral equations of the second kind. The discretized Galerkin method is obtained from using numerical integration to evaluate the integrals occurring in the Galerkin method. The theoretical framework that is given parallels that of the regular Galerkin method, including the error analysis of the superconvergence of the iterated Galerkin and discrete Galerkin solutions. In some cases, the iterated discrete Galerkin solution is shown to coincide with the Nyström solution with the same numerical integration method. The paper concludes with applications to finite element Galerkin methods.
منابع مشابه
A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...
متن کاملDiscrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients
This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملSuperconvergence Results for the Iterated Discrete Legendre Galerkin Method for Hammerstein Integral Equations
In this paper we analyse the iterated discrete Legendre Galerkin method for Fredholm-Hammerstein integral equation with a smooth kernel. Using a sufficiently accurate numerical quadrature rule, we obtain super-convergence rates for the iterated discrete Legendre Galerkin solutions in both infinity and L-norm. Numerical examples are given to illustrate the theoretical results.
متن کامل